SYNTHESIS OF TETRATHIAFULVALENE DERIVATIVES BY DIMERIZATION OF 1,3-DITHIOLSELENONES-2 USING TRIPHENYLPHOSPHINE

O. Ya. Neiland, K. A. Balodis, V. Yu. Khodorkovskii, and V. Zh. Tilika

UDC 547.812'738.04

Tetrathiafulvalenes (I) are key compounds in the synthesis of materials with metallic conductivity and superconductivity [1, 2]. The principal method of synthesis is the dimerization of 2-derivatives of the 1,3-dithiol [3]. The combination of selenones and trialkylphosphites is rarely used for this purpose. Selenone dimerization by means of triphenylphosphine has been described only for the selenone analogs of 1,3-dithiol-2-selenone [3]. When alkylseleno-1,3-dithiolium salts react with PPh₃ they form derivatives of tetrathiafulvalenes in good yield [4].

We have established that PPh_3 is an excellent reagent for the dimerization of selenones (II). It works at a 1:(1.0-2.0) molar ratio of (II)—PPh₃, in various solvents (DMFA, pyridine, benzene, toluene), over a broad temperature range — from 2-3 days at room temperature to 60-90 min at 90°C at various concentrations of (II) (0.01-0.17 mole/liter). The reaction conditions affect the yield of (I), as was shown for the dimerization of (IIa).

The optimum (II)—PPh₃ ratio is 1:(1.5-2.0). The results presented below were obtained at a 1:2 ratio. Most of the tests were carried out in DMFA solution. At concentrations below 0.04 mole/liter in DMFA, dimerization at 4-70°C is unsatisfactory. At 0.15-0.17 mole/liter and 65-70°C for 90 min the yield of (Ia) reaches 85-90%. Raising the temperature to 90°C lowers the yield. At low concentrations of (IIa) carboxylic acids have a surprising effect on dimerization in DMFA. Thus at 0.035-0.040 mole/liter and 65-70°C acetic or formic acid [approximately fivefold excess with respect to (IIa)] increase the yield of (Ia) to 80-85%. But the stronger phosphoric acid prevents the formation of (Ia). At 0.15-0.20 mole/liter of (IIa) acetic acid has little effect.

Boiling in benzene for 3 h at 0.02-0.15 mole/liter of (IIa) forms (Ia) in 65-90% yield. Starting with 0.12 mole/liter of (IIa) in pyridine at 70°C for 90 min, (Ia) crystallizes out in 80% yield.

Bis(ethylenedithio)tetrathiafulvalene (Ia). Compound (IIa), 0.28 g, was dissolved in 6 ml of DMFA at 80-90°C and 0.3 ml of glacial acetic acid was added. Then 0.56 g of triphenylphosphine was added at 65-70°C, and the mixture was held at that temperature for 90 min. Then it was kept in the refrigerator for 1 day. Compound (Ia) was formed as coarse shiny red crystals in amount of 0.18-0.19 g (90-95%).

Tetrathiafulvalenes (Ib)(in DMFA, 70% yield), (Id) (in DMFA, 70% yield), and (Ie) (in benzene, 80% yield) were obtained analogously.

LITERATURE CITED

- 1. R. N. Lyubovskaya, Usp. Khim., 52, 1301 (1983).
- 2. É.B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, A. V. Zvarykina, and L. I. Buravov, *Zh. Éksp. Teor. Fiz.*, **39**, 12 (1984).
- 3. A. Krief, Tetrahedron, 42, 1209 (1986).
- 4. A. Richter, G. Schukat, and E. Fanghaenel, DDR Patent, No. 214,846; Ref. Zh. Khim., 13, N215P (1985).

Riga Technical University, Riga 226355. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1278-1279, September, 1991. Original article submitted January 16, 1991.